Solid electrolyte composed of nanoparticles shows promise for all-solid-state batteries

Solid electrolyte composed of nanoparticles shows promise for all-solid-state batteries
TEM observation results for the x = 0.25 powder sample. (a) HCDF image, (b) ED pattern, and (c) EDX maps. HCDF image, ED pattern and EDS maps were obtained from the same region. Credit: Chemistry of Materials (2024). DOI: 10.1021/acs.chemmater.4c02104

Often overlooked, rechargeable batteries play an important part in contemporary life, powering small devices like smartphones to larger ones like electric vehicles. The keys to creating sustainable rechargeable batteries include having them hold their charge longer, giving them a longer life with more charging cycles, and making them safer. Which is why there is so much promise in all-solid-state batteries.

The problem is discovering which solid electrolytes offer such potential advantages.

In a step toward that goal, an Osaka Metropolitan University research group led by Assistant Professor Kota Motohashi, Associate Professor Atsushi Sakuda, and Professor Akitoshi Hayashi of the Graduate School of Engineering has developed an electrolyte with high conductivity, formability, and electrochemical stability.

The findings were published in Chemistry of Materials.

The group achieved high conductivity at room temperature by adding Ta2O5 (tantalum pentoxide) to the previously developed solid electrolyte NaTaCl6, a combination of tantalum chloride and sodium chloride.

The discovered solid electrolyte, Na2.25TaCl4.75O1.25, also has a higher electrochemical stability than conventional chlorides and superior mechanical properties.

“The results of this research are expected to make a significant contribution to the development of composite solid electrolytes, in addition to the glass and crystal solid electrolytes that have been developed to date,” Professor Motohashi suggested.

“We will now be focusing on elucidating the ionic conduction mechanism of composite solid electrolytes and further developing materials.”

More information:
Kota Motohashi et al, Fast Sodium-Ion Conducting Amorphous Oxychloride Embedding Nanoparticles, Chemistry of Materials (2024). DOI: 10.1021/acs.chemmater.4c02104

Provided by
Osaka Metropolitan University

Citation:
Solid electrolyte composed of nanoparticles shows promise for all-solid-state batteries (2024, October 2)
retrieved 3 October 2024
from https://phys.org/news/2024-10-solid-electrolyte-nanoparticles-state-batteries.html

This document is subject to copyright. Apart from any fair dealing for the purpose of private study or research, no
part may be reproduced without the written permission. The content is provided for information purposes only.

Latest news

Microfiber Cloths as Ultimate Cleaning Companions

The result of cleaning depends on the quality of the selected tools. It is important that the cloth used...

Snap Spectacles 5 Unveiled with Enhanced AR Capabilities

September 18, 2024 – Snap Inc. has this week announced the release of the fifth generation of Spectacles – the...

See Far project presents the Project outcomes impact assessment

The socio-economic analysis and the validation of the See Far solution include macroeconomic variables relevant to the EU context...

The Impact of Nanotech Innovation and Funding – $3.78 Billion in 2022 « Genesis Nanotechnology

In investments, the convergence of financial gains with positive societal impact has given rise to impact investing. This approach...

Amazon Prime Day Wearable Tech Deals — Dates, Early Discounts, Tips, and Tricks

Amazon Prime Day has grown into one of the biggest sales events of the year, with offers rivaling those...

Must read

Apple Watch Ultra GPS + Cellular 49mm Titanium Smartwatch

The Apple Watch Ultra is finally here. It is...

Why My Fossil Watch Not Turning On? 6 Tips to Fix It

Don’t panic if your Fossil Watch does not turn...